Computer
A computer is a device that can be instructed to carry out sequences of arithmetic or logical operations automatically via computer programming. Modern computers have the ability to follow generalized sets of operations, called programs. These programs enable computers to perform an extremely wide range of tasks.
Computer Science
Computer science is the study of the theory, experimentation, and engineering that form the basis for the design and use of computers. It is the scientific and practical approach to computation and its applications and the systematic study of the feasibility, structure, expression, and mechanization of the methodical procedures (or algorithms) that underlie the acquisition, representation, processing, storage, communication of, and access to, information. An alternate, more succinct definition of computer science is the study of automating algorithmic processes that scale. A computer scientist specializes in the theory of computation and the design of computational systems. See glossary of computer science.
Computing
Computing is any goal-oriented activity requiring, benefiting from, or creating computers. Computing includes designing, developing and building hardware and software systems; designing a mathematical sequence of steps known as an algorithm; processing, structuring, and managing various kinds of information; doing scientific research on and with computers; making computer systems behave intelligently; and creating and using communications and entertainment media. The field of computing includes computer engineering, software engineering, computer science, information systems, and information technology.
Discrete
Discrete in science is the opposite of continuous: something that is separate; distinct; individual. Discrete may refer to:
Science
Science (from Latin scientia, meaning "knowledge") is a systematic enterprise that builds and organizes knowledge in the form of testable explanations and predictions about the universe.
Theory
A theory is a contemplative and rational type of abstract or generalizing thinking, or the results of such thinking. Depending on the context, the results might, for example, include generalized explanations of how nature works. The word has its roots in ancient Greek, but in modern use it has taken on several related meanings.
Computer Science
Interviewer: Is studying computer science the best way to prepare to be a programmer? Bill Gates: No. the best way to prepare is to write programs, and to study great programs that other people have written. In my case, I went to the garbage cans at the Computer Science Center and I fished out listings of their operating system. You got to be willing to read other people's code, then write your own, then have other people review your code. You've got to want to be in this incredible feedback loop where you get the world-class people to tell you what you're doing wrong.
Bill Gates cited in: "Programmers at Work: Interviews With 19 Programmers Who Shaped the Computer Industry", Tempus, by Susan Lammers (Editor)
Theory
How can we possibly test, or improve upon the truth of a theory if it is built in such a manner then any conceivable event can be described, and explained, in terms of its principles? The only way of investigating such all-embracing principles would be to compare them with a different set of equally all embracing principles- but this procedure has been excluded from the very beginning.
Paul Feyerabend, Against Method (1975) pp. 44-45
Computer Science
I can’t be as confident about computer science as I can about biology. Biology easily has 500 years of exciting problems to work on. It’s at that level.
Donald Knuth (1993) Computer Literacy Bookshops Interview