Brno, Czech Republic

Physiology, Pathological Physiology, Medical Chemistry and Biochemistry

Language: English Studies in English
Subject area: medicine, health care
University website: www.muni.cz/
Years of study: 4
Biochemistry
Biochemistry, sometimes called biological chemistry, is the study of chemical processes within and relating to living organisms. By controlling information flow through biochemical signaling and the flow of chemical energy through metabolism, biochemical processes give rise to the complexity of life. Over the last decades of the 20th century, biochemistry has become so successful at explaining living processes that now almost all areas of the life sciences from botany to medicine to genetics are engaged in biochemical research. Today, the main focus of pure biochemistry is on understanding how biological molecules give rise to the processes that occur within living cells, which in turn relates greatly to the study and understanding of tissues, organs, and whole organisms—that is, all of biology.
Chemistry
Chemistry is the scientific discipline involved with compounds composed of atoms, i.e. elements, and molecules, i.e. combinations of atoms: their composition, structure, properties, behavior and the changes they undergo during a reaction with other compounds. Chemistry addresses topics such as how atoms and molecules interact via chemical bonds to form new chemical compounds. There are four types of chemical bonds: covalent bonds, in which compounds share one or more electron(s); ionic bonds, in which a compound donates one or more electrons to another compound to produce ions (cations and anions); hydrogen bonds; and Van der Waals force bonds.
Physiology
Physiology (; from Ancient Greek φύσις (physis), meaning 'nature, origin', and -λογία (-logia), meaning 'study of') is the scientific study of normal mechanisms, and their interactions, which work within a living system. A sub-discipline of biology, its focus is in how organisms, organ systems, organs, cells, and biomolecules carry out the chemical or physical functions that exist in a living system. Given the size of the field, it is divided into, among others, animal physiology (including that of humans), plant physiology, cellular physiology, microbial physiology (microbial metabolism), bacterial physiology, and viral physiology.
Chemistry
Just think of the differences today. A young person gets interested in chemistry and is given a chemical set. But it doesn't contain potassium cyanide. It doesn't even contain copper sulfate or anything else interesting because all the interesting chemicals are considered dangerous substances. Therefore, these budding young chemists don't get a chance to do anything engrossing with their chemistry sets. As I look back, I think it is pretty remarkable that Mr. Ziegler, this friend of the family, would have so easily turned over one-third of an ounce of potassium cyanide to me, an eleven-year-old boy.
Linus Pauling In His Own Words (1995) by Barbara Marinacci, p. 29
Chemistry
I was an atheist, finding no reason to postulate the existence of any truths outside of mathematics, physics and chemistry. But then I went to medical school, and encountered life and death issues at the bedsides of my patients. Challenged by one of those patients, who asked "What do you believe, doctor?", I began searching for answers.
Francis Collins, a geneticist who led the U.S. government’s effort to decipher the human genome (DNA). cnn.com
Chemistry
Chemists usually write about their chemical careers in terms of the different areas and the discrete projects in those areas on which they have worked. Essentially all my chemical investigations, however, are in only one area, and I tend to view my research not with respect to projects, but with respect to where I’ve been driven by two passions which I acquired in graduate school: I am passionate about the Periodic Table (and selenium, titanium and osmium are absolutely thrilling), and I am passionate about catalysis. What the ocean was to the child, the Periodic Table is to the chemist; new catalytic reactivity is, of course, my personal coelacanth.
K. Barry Sharpless, Nobel lecture, 2001
Understanding the relationship between climate and ecosystems is crucial to preventing undesired changes to our environment, such as desertification and the loss of species. However, the multi-component and multi-scale nature of ecosystems makes them difficult to easily understand.
Privacy Policy