Cosmology
Cosmology (from the Greek κόσμος, kosmos "world" and -λογία, -logia "study of") is the study of the origin, evolution, and eventual fate of the universe. Physical cosmology is the scientific study of the universe's origin, its large-scale structures and dynamics, and its ultimate fate, as well as the scientific laws that govern these areas.
Particle
In the physical sciences, a particle (or corpuscule in older texts) is a small localized object to which can be ascribed several physical or chemical properties such as volume, density or mass. They vary greatly in size or quantity, from subatomic particles like the electron, to microscopic particles like atoms and molecules, to macroscopic particles like powders and other granular materials. Particles can also be used to create scientific models of even larger objects depending on their density, such as humans moving in a crowd or celestial bodies in motion.
Particle Physics
Particle physics (also high energy physics) is the branch of physics that studies the nature of the particles that constitute matter and radiation. Although the word "particle" can refer to various types of very small objects (e.g. protons, gas particles, or even household dust), "particle physics" usually investigates the irreducibly smallest detectable particles and the fundamental interactions necessary to explain their behaviour. By our current understanding, these elementary particles are excitations of the quantum fields that also govern their interactions. The currently dominant theory explaining these fundamental particles and fields, along with their dynamics, is called the Standard Model. Thus, modern particle physics generally investigates the Standard Model and its various possible extensions, e.g. to the newest "known" particle, the Higgs boson, or even to the oldest known force field, gravity.
Physics
Physics (from Ancient Greek: φυσική (ἐπιστήμη), translit. physikḗ (epistḗmē), lit. 'knowledge of nature', from φύσις phýsis "nature") is the natural science that studies matter and its motion and behavior through space and time and that studies the related entities of energy and force. Physics is one of the most fundamental scientific disciplines, and its main goal is to understand how the universe behaves.
Physics
There have indeed been civilizations upon your planet that understood as well as you, and without your kind of technology, the workings of the planets, the positioning of the stars -- people who even foresaw "later" global changes. They used a mental physics. There were men before you who brought back data quite as "scientific" and pertinent. There were those who understood the "origin" of your solar system far better than you. Some of these civilizations did not need spaceships. Instead, highly trained men combining the abilities of dream-art scientists and mental physicists cooperated at journeys not only through time but through space.
Jane Roberts, in The “Unknown” Reality: Volume One, p. 196, Session 702
Physics
The physicist ... engages in complex and difficult calculations, involving the manipulating of ideal, mathematical quantities that, at first glance, are wholly lacking in the music of the living world and the beauty of the resplendent cosmos. It would seem as if there exists no relationship between these quantities and reality. Yet these ideal numbers that cannot be grasped by one's senses, these numbers that only are meaningful from within the system itself, only meaningful as part of abstract mathematical functions, symbolize the image of existence. ... As a result of scientific man's creativity there arises an ordered, illumined, determined world, imprinted with the stamp of creative intellect, of pure reason and clear cognition. From the midst of the order and lawfulness we hear a new song, the song of the creature to the Creator, the song of the cosmos to its Maker.
Joseph B. Soloveitchik, Halakhic Man (1983), pp. 83-84
Physics
The "paradox" is only a conflict between reality and your feeling of what reality "ought to be."
Richard Feynman, The Feynman Lectures on Physics (1964) Volume III, p. 18-9