Colchester, United Kingdom

Discrete Mathematics

Language: English Studies in English
Subject area: mathematics and statistics
Kind of studies: full-time studies, part-time studies
University website: www.essex.ac.uk
Doctor of Philosophy (PhD)
Discrete
Discrete in science is the opposite of continuous: something that is separate; distinct; individual. Discrete may refer to:
Discrete Mathematics
Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous. In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics – such as integers, graphs, and statements in logic – do not vary smoothly in this way, but have distinct, separated values. Discrete mathematics therefore excludes topics in "continuous mathematics" such as calculus and analysis. Discrete objects can often be enumerated by integers. More formally, discrete mathematics has been characterized as the branch of mathematics dealing with countable sets (sets that have the same cardinality as subsets of the natural numbers, including rational numbers but not real numbers). However, there is no exact definition of the term "discrete mathematics." Indeed, discrete mathematics is described less by what is included than by what is excluded: continuously varying quantities and related notions.
Mathematics
Mathematics (from Greek μάθημα máthēma, "knowledge, study, learning") is the study of such topics as quantity, structure, space, and change. It has no generally accepted definition.
Mathematics
A mathematician, like a painter or poet, is a maker of patterns. If his patterns are more permanent than theirs, it is because they are made with ideas.
G. H. Hardy, A Mathematician's Apology (London 1941).. Quotations by Hardy. Gap.dcs.st-and.ac.uk. Retrieved on 27 November 2013.
Mathematics
Who has studied the works of such men as Euler, Lagrange, Cauchy, Riemann, Sophus Lie, and Weierstrass, can doubt that a great mathematician is a great artist? The faculties possessed by such men, varying greatly in kind and degree with the individual, are analogous with those requisite for constructive art. Not every mathematician possesses in a specially high degree that critical faculty which finds its employment in the perfection of form, in conformity with the ideal of logical completeness; but every great mathematician possesses the rarer faculty of constructive imagination.
E. W. Hobson, Presidential Address British Association for the Advancement of Science (1910) Nature Vol. 84 p. 290 as quoted by Robert Édouard Moritz, Memorabilia Mathematica; Or, The Philomath's Quotation-book (1914) p. 184.
Mathematics
Think of it: of the infinity of real numbers, those that are most important to mathematics—0, 1, √2, e and π—are located within less than four units on the number line. A remarkable coincidence? A mere detail in the Creator's grand design? I let the reader decide.
Eli Maor, e: The Story of a Number (1994)
Privacy Policy