Dundee, United Kingdom

Biomedical Engineering

Language: English Studies in English
Subject area: engineering and engineering trades
University website: www.dundee.ac.uk
Biomedical Engineering
Biomedical engineering (BME) is the application of engineering principles and design concepts to medicine and biology for healthcare purposes (e.g. diagnostic or therapeutic). This field seeks to close the gap between engineering and medicine, combining the design and problem solving skills of engineering with medical biological sciences to advance health care treatment, including diagnosis, monitoring, and therapy. Biomedical engineering has only recently emerged as its own study, as compared to many other engineering fields. Such an evolution is common as a new field transitions from being an interdisciplinary specialization among already-established fields, to being considered a field in itself. Much of the work in biomedical engineering consists of research and development, spanning a broad array of subfields (see below). Prominent biomedical engineering applications include the development of biocompatible prostheses, various diagnostic and therapeutic medical devices ranging from clinical equipment to micro-implants, common imaging equipment such as MRIs and EKG/ECGs, regenerative tissue growth, pharmaceutical drugs and therapeutic biologicals.
Engineering
Engineering is the creative application of science, mathematical methods, and empirical evidence to the innovation, design, construction, operation and maintenance of structures, machines, materials, devices, systems, processes, and organizations. The discipline of engineering encompasses a broad range of more specialized fields of engineering, each with a more specific emphasis on particular areas of applied mathematics, applied science, and types of application. See glossary of engineering.
Engineering
Engineering: The art of organizing and directing men, and of controlling the forces and materials of nature for the benefit of the human race.
Henry Gordon Stott. Presidential address, 1908, to American Institute of Electrical Engineers. Cited in: Halbert Powers Gillette (1920) Engineering and Contracting. Vol. 54. p. 97
Engineering
Only among those who were engaged in a particular activity did their language remain unchanged; so, for in­stance, there was one for all the architects, one for all the carriers of stones, one for all the stone-breakers, and so on for all the different opera­tions. As many as were the types of work involved in the enterprise, so many were the languages by which the human race was fragmented; and the more skill required for the type of work, the more rudimentary and barbaric the language they now spoke. But the holy tongue remained to those who had neither joined in the project nor praised it, but instead, thoroughly disdaining it, had made fun of the builders' stupidity.
Dante Alighieri, De vulgari eloquentia, Chapter VII
Engineering
Engineering is the conscious application of science to the problem of economic production.
Halbert Powers Gillette (1910). cited in: T.J. Hoover & J.C. Lounsbury Fish. The Engineering Profession. Stanford University Press, 1941. p. 463
A research background in earthquake engineering seems at first sight like an unusual fit with studying tsunamis. But on her return from Sri Lanka in the wake of the 2004 tsunami, Professor Tiziana Rossetto discovered that very little research had been done into the effects of tsunamis on coastal infrastructure and she wanted to find out more. She will be presenting this research to the public at the TEDx Brussels event on 1 December.
Privacy Policy