Biology
Biology is the natural science that involves the study of life and living organisms, including their physical structure, chemical composition, function, development and evolution. Modern biology is a vast field, composed of many branches. Despite the broad scope and the complexity of the science, there are certain unifying concepts that consolidate it into a single, coherent field. Biology recognizes the cell as the basic unit of life, genes as the basic unit of heredity, and evolution as the engine that propels the creation of new species. Living organisms are open systems that survive by transforming energy and decreasing their local entropy to maintain a stable and vital condition defined as homeostasis. See glossary of biology.
Cancer
Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread to other parts of the body. Possible signs and symptoms include a lump, abnormal bleeding, prolonged cough, unexplained weight loss and a change in bowel movements. While these symptoms may indicate cancer, they may have other causes. Over 100 types of cancers affect humans.
Cell Biology
Cell biology (formerly called cytology, from the Greek κυτος, kytos, "vessel") is a branch of biology that studies the different structures and functions of the cell and focuses mainly on the idea of the cell as the basic unit of life. Cell biology explains the structure and organization of the organelles they contain. It includes the physiological properties, metabolic processes, signaling pathways, life cycle, and interactions with their environment. This is done both on a microscopic and molecular level as it encompasses prokaryotic cells and eukaryotic cells. Knowing the components of cells and how cells work is fundamental to all biological sciences; it is also essential for research in bio-medical fields such as cancer, and other diseases. Research in cell biology is closely related to genetics, biochemistry, molecular biology, immunology, and developmental biology.
Immunology
Immunology is a branch of biology that covers the study of immune systems in all organisms. Immunology charts, measures, and contextualizes the: physiological functioning of the immune system in states of both health and diseases; malfunctions of the immune system in immunological disorders (such as autoimmune diseases, hypersensitivities, immune deficiency, and transplant rejection); the physical, chemical and physiological characteristics of the components of the immune system in vitro, in situ, and in vivo. Immunology has applications in numerous disciplines of medicine, particularly in the fields of organ transplantation, oncology, virology, bacteriology, parasitology, psychiatry, and dermatology.
Science
Science (from Latin scientia, meaning "knowledge") is a systematic enterprise that builds and organizes knowledge in the form of testable explanations and predictions about the universe.
Biology
Today, nearly all biologists acknowledge that evolution is a fact.
Neil A. Campbell, Biology 2nd ed., 1990, Benjamin/Cummings, p. 434
Cancer
Physically, however, the body is quite able to completely regenerate itself as it approaches old age. Indeed, a quite legitimate second puberty is possible, in which the male’s seed is youthfully strong and vital, and the woman’s womb is pliable and able to bear . . . Now, to some extent there is a connection between this innate, rarely observed second puberty and the development of cancer, in which growth is specifically apparent in an exaggerated manner.
Jane Roberts, in The Nature of the Psyche: Its Human Expression, Session 770, Page 66
Science
We say that the string is 'random' if there is no other representation of the string which is shorter than itself. But we will say that it is 'non-random' if there does exist such an abbreviated representation. ... In general, the shorter the possible representation... the less random... On this view we recognize science to be the search for algorithmic compressions. ... It is simplest to think of mathematics as the catalogue of all possible patterns. ... When viewed in this way, it is inevitable that the world is described by mathematics. ...In many ways the search for a Theory of Everything is a manifestation of a faith that this compression goes all the way down to the bedrock of reality...
John D. Barrow, New Theories of Everything (2007).